Martin Nocker, MSc

Project Assistant martin.nocker@mci.edu
Martin Nocker, MSc


Professional work experience
  • 02/2021 - present
    Project Assistant - Management Center Innsbruck
  • 02/2019 - 01/2021
    Software Engineer Automation - D. Swarovski KG, Wattens
  • 05/2018 - 12/2018
    Master's Student - BMW AG
Education
  • 10/2021 - present
    University of Rostock
    PhD Student
  • 10/2016 - 12/2018
    MSc - Technical University of Munich
    Electrical and Computer Engineering
  • 10/2013 - 03/2016
    BSc - Leopold-Franzens University Innsbruck
    Computer Science
Teaching (faculty internships etc.)
  • 09/2024 - present
    MCI - The Entrepreneurial School
    Programming I
  • 02/2024 - present
    MCI - The Entrepreneurial School
    Smart Systems & Machine Learning
Practice related research and developmental project
  • 03/2024 - present
    Research Assistant - MCI - The Entrepreneurial School
    Josef Ressel Center for Security Analysis of IoT-Devices
  • 04/2021 - 09/2023
    Wissenschaftlicher Mitarbeiter - FFG - Die Österreichische Forschungsförderungsgesellschaft
    SMiLE - Secure Machine Learning Applications with Homomorphically Encrypted Data
Peer reviewed journal article
  • Klocker, F., Bernsteiner, R., Ploder, C., & Nocker, M. (2023). A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts. Cloud Computing and Data Science, 4(2), 87-111. https://doi.org/10.37256/ccds.4220232277
Peer reviewed academic/professional meeting proceedings
  • Russold, M., Nocker, M., & Schöttle, P. (2024). Incremental Whole Plate ALPR Under Data Availability Constraints. Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM, 131-140. https://doi.org/10.5220/0012566400003654
  • Schmidt, J., Pietsch, V., Nocker, M., Rader, M., & Montuoro, A. (2024). Navigating the Trade-Off Between Explainability and Privacy. Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - VISIGRAPP, 726-733. https://doi.org/10.5220/0012472200003660
  • Merkle, F., Sirbu, M. R., Nocker, M., & Schöttle, P. (2024). Generating Invariance-Based Adversarial Examples: Bringing Humans Back into the Loop. In G. L. Foresti, A. Fusiello, & E. Hancock (Hrsg.), Image Analysis and Processing—ICIAP 2023 Workshops (S. 15-27). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51023-6_2
  • Martin, Nocker, David, Drexel, Michael Rader, Alessio Montuoro, and Pascal Schöttle. "HE-MAN - Homomorphically Encrypted MAchine learning with oNnx models", In The 8th International Conference on Machine Learning Technologies (ICMLT), 2023. https://doi.org/10.1145/3589883.3589889
  • Roland Rauter, Martin Nocker, Florian Merkle, and Pascal Schöttle. "On the Effect of Adversarial Training Against Invariance-based Adversarial Examples", In The 8th International Conference on Machine Learning Technologies (ICMLT), 2023. https://doi.org/10.1145/3589883.3589891
  • Widmann, T., Merkle, F., Nocker, M., & Schöttle, P. (2023). Pruning for Power: Optimizing Energy Efficiency in IoT with Neural Network Pruning. In L. Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, & E. Pimenidis (Hrsg.), Engineering Applications of Neural Networks (S. 251-263). Springer Nature Switzerland. doi: 10.1007/978-3-031-34204-2_22
  • Mrowca, A., Nocker, M., Steinhorst, S., & Günnemann, S. (2019). Learning temporal specifications from imperfect traces using bayesian inference. In Proceedings of the 56th Annual Design Automation Conference 2019 (pp. 1-6).
Supervised bachelor theses
  • Oberhofer Samuel (2024): Invariance-Based Adversarial Examples: Algorithmic Creation and Human Evaluation for Image Classification
  • Aster Pirmin (2024): Maschinelle Fehlererkennung im technischen Keramik-3D-Druck
  • Meusburger Matthias (2024): Analysis of Air Quality Data Using Homomorphic Encryption
  • Koudelka Paul (2023): Explainable Machine Learning Algorithms While Using Homomorphic Encryption