Prof. Dr. Pascal Schöttle

Head of Josef Ressel Centre for Security Analysis of IoT DevicesIT Security & Machine Learning +43 512 2070 - 4332 pascal.schoettle@mci.edu
Prof. Dr. Pascal Schöttle

Pascal is a professor for IT Security and Machine Learning at the department Digital Business & Software Engineering at MCI - The Entrepreneurial School in Innsbruck.


Professional work experience
  • 06/2022 - present
    Professor - MCI - The Entrepreneurial School, Austria
  • 10/2020 - 06/2022
    Associate Professor - MCI - The Entrepreneurial School, Austria
  • 10/2018 - 09/2020
    Lecturer - MCI - The Entrepreneurial School, Austria
  • 03/2015 - 09/2018
    Post-Doc - University of Innsbruck, Austria
  • 09/2014 - 02/2015
    Post-Doc - University Münster, Deutschland
  • 02/2013 - 04/2013
    Visiting Scholar - Pennsylvania State University, USA
  • 09/2011 - 08/2014
    Scientific Staff Member (Doctoral Candidate) - University Münster, Germany
  • 07/2010 - 06/2011
    Scientific Student Assistent - Ruhr-University Bochum, Deutschland
Education
  • 10/2011 - 07/2014
    Ph. D. (Dr. rer. nat) - University Münster, Germany
    Computer Science
  • 04/2008 - 06/2011
    Master of Science - Ruhr-University Bochum, Germany
    IT Security / Networks and Systems
  • 10/2003 - 02/2008
    Bachelor of Science - University of Duisburg-Essen, Germany
    Mathematical Engineering
Teaching (faculty internships etc.)
  • 01/2020 - present
    MCI - The Entrepreneurial School, Austria
    Smart Systems & Machine Learning
  • 01/2020 - present
    MCI - The Entrepreneurial School, Austria
    IT Security
  • 01/2020 - 12/2022
    MCI - The Entrepreneurial School, Austria
    Integrated Overall Project
  • 01/2019 - present
    MCI - The Entrepreneurial School, Austria
    Mathematics for Software Engineering
  • 01/2019 - 12/2022
    MCI - The Entrepreneurial School, Austria
    Algorithms & Data Structures
  • 01/2019 - present
    MCI - The Entrepreneurial School, Austria
    Management Information Systems
  • 01/2019 - 12/2021
    MCI - The Entrepreneurial School, Austria
    Data Science
  • 01/2019 - present
    MCI - The Entrepreneurial School, Austria
    Security for Smart Technologies
  • 01/2018 - present
    MCI - The Entrepreneurial School, Austria
    Logic & Computability
  • 01/2017 - 12/2018
    University of Innsbruck, Austria
    Communication Technology and Computer Networks
  • 01/2016 - 12/2018
    University of Innsbruck, Austria
    Information Security II
  • 01/2015 - 12/2018
    University of Innsbruck, Austria
    Introduction to Computer Engineering
  • 01/2015 - 12/2018
    University of Innsbruck, Austria
    Computer Networks and Internet Technology
  • 01/2012 - 12/2014
    University Münster, Germany
    Multimedia Security
  • 01/2012 - 12/2014
    University Münster, Germany
    Advanced Cryptology
Practice related research and developmental project
  • 07/2023 - present
    Head of Research Center - CDG - Christian Doppler Forschungsgesellschaft
    Josef Ressel Center for Security Analysis of IoT Devices
  • 04/2021 - 12/2023
    Principal Investigator (@ MCI) - FFG - The Austrian Research Promotion Agency
    SMiLE - Secure Machine Learning Applications with Homomorphically Encrypted Data
  • 01/2019 - 06/2023
    Principal Investigator - FWF - Austrian Science Fund
    Game Over Eva(sion): Securing Deep Learning with Game Theory Keywords: Deep Learning, Security, Game Theory, Evasion Attacks
  • 01/2017 - 12/2019
    Project Leader - Forschungsförderungsmittel der Nachwuchsförderung 2017 (University Innsbruck)
    “Forensic Analysis of Scanned Text Documents" (FASTDoc).
Competitive Research Award
  • 11/2012 - 11/2012
    IEEE International Workshop on Information Forensics and Security
    Best Student Paper Award
  • 09/2008 - 09/2008
    CAST - Competence Center for Applied Security Technology
    2nd place at CAST Förderpreis in IT security,
Further education & Training
  • 2019 - 2019
    MCI - The Entrepreneurial School
    Blended Learning 1-2-3
  • 2018 - 2018
    MCI - The Entrepreneurial School
    Sakai Advanced
  • 2018 - 2018
    MCI - The Entrepreneurial School
    Adobe Connect Advanced
  • 2018 - 2018
    MCI - The Entrepreneurial School
    Sakai Basic
  • 2018 - 2018
    MCI - The Entrepreneurial School
    Adobe Connect Basics
Other
  • 03/2015 - 03/2015
    FFG Relocation Grant, for the relocation from Germany to Austria.
  • 03/2013 - 03/2013
    ONR Visiting Researcher Grant, funding the research visit at the Pennsylvania State University, US.
Positions in professional/academic societies
  • 01/2018 - 12/2018
    Programm Committee Co-Chair - ACM Information Hiding & Multimedia Security 2018
  • 01/2018 - 12/2018
    Programm Committee Member - IEEEE International Conference on Acoustics, Speech, and Signal Processing
  • 01/2015 - 12/2020
    Program Committee Member - ACM Information Hiding & Multimedia Security
  • 01/2015 - 12/2018
    Programm Committee Member - International Workshop on Digital-forensics and Watermarking
Peer reviewed journal article
  • Merkle, F., Weber, D., Schöttle, P., Schlögl, S., & Nocker, M. (2025). Less is More: The Influence of Pruning on the Explainability of CNNs. IEEE Access, 13, 87909–87927. https://doi.org/10.1109/ACCESS.2025.3569575
  • Merkle, F., Samsinger, M., Schöttle, P., & Pevny, T. (2024). On the Economics of Adversarial Machine Learning. IEEE Transactions on Information Forensics and Security, 1–1. https://doi.org/10.1109/TIFS.2024.3379829
Presentation of a paper at a conference, workshop or seminar
  • Schöttle, P. (2025, August 16). CyberSecurity IoT [Invited Talk]. Euregio Days Forum Alpbach, Alpbach, Austria.
  • Schöttle, P. (2025, May 8). Josef Ressel Centre for Security Analysis of IoT Devices [Conference Presentation]. FFH2025 18. Forschungsforum der österreichischen Fachhochschulen, Vienna, Austria.
  • Schöttle, P. (2025, February 20). The Cyber Resilience Act and its Meaning for Cybersecurity Vendors [Invited Talk]. AV-Comparatives Security Summit & Awards, Innsbruck, Austria.
Supervised bachelor theses
  • Kelmer Romed (2025): Anomalie Erkennung in einem LoRaWAN Netzwerk
  • Buchmann Mira (2025): State-sponsored Actors and Their Implications for Web Application Security
  • Gritsch Lukas (2025): Persönliches Trainingssystem für Luftgewehrschützen:innen
  • Windisch Jakob (2025): Comparative Analysis of Self-Supervised Learning Algorithms for Effective Data Labeling and Performance Improvements in Computer Vision Models
  • Brandacher Daniel (2025): Evaluierung wesentlicher Einflussfaktoren bei der Implementierung eines lokalen Open Source Large Language Models
  • Ladner Adrian (2025): Reinforcement Learning für die Anomalieerkennung in Netzwerken
  • Kalupa Aaron Joel (2025): Gamifizierte IT-Sicherheit: Design, Umsetzung und Evaluation einer webbasierten Lernplattform
  • Jarosch Simon (2024): From Zero to h3r0 Creating a Web Application Security Playbook for Students
  • Müller Sandra (2024): Analyse der Integration von Securability und deren Einfluss auf die Arbeitsumgebung in österreichischen IT-Unternehmen
  • Witsch Phillipp (2024): Optimierung der Operationsplanung mit Hilfe von Machine Learning in den Tirol Kliniken
  • Genctan Pascal (2024): Effiziente Bilderkennung in der Pharmaproduktion durch Supervised Learning
  • Jauck Nicholas (2024): Screenshot - resistente digitale Wasserzeichen für soziale Netzwerke
  • Burns-Balog Jana Madison (2024): Towards More Secure Databases : Developing an Adaptive Deep Forest -Based SQL Injection Detection Tool
  • Gerges Youssef (2023): Web Application Security Education
  • Schweitzer Stefan (2023): Container Orchestrierungen: Eine qualitative Erhebung zu aktuellen Sicherheitsmaßnahmen und Best Practices
  • Stöbich Roman (2023): Machine Learning als Methode zur Anomaliedetektion in drahtlosen Lichtsteuersystemen
  • Payr Patrik (2023): Cyber-Sicherheit für Smartphones: Angriffsvektoren und Container-Anwendungen im Android Betriebssystem als Schutzmaßnahme
  • Russold Markus (2023): On The Usage Of Deep Learning To Improve License Plate Recognition Quality In Post-Processing Based On A Continual Learning Approach
  • Gangl Katharina (2023): Ultimateberechnung von Hagelschäden in Österreich mithilfe von Machine Learning
  • Suntinger Fabian (2023): Abschätzung der Arbeitszeit für zusätzliche Ingenieurleistungen für Balance-of-Plant-/Anlagenbau- und Sonderaufträge bei INNIO Jenbacher
  • Rauter Roland (2022): Trainieren eines CNN mithilfe von Invariance-Based Adversarial Examples
  • Stockinger Rene (2022): Universal Adversarial Perturbations als Angriff gegen Gesichtserkennung
  • Mösl Michael (2022): On-Device Modell Optimierung von Machine-Learning Algorithmen auf mobilen Geräten
  • Hüttl Mathis (2022): Welche Anforderungen hat eine Software zur Bekämpfung von Fake News im Internet und wie kann diese umgesetzt werden?
  • Köll Julian (2022): Cybersecurity in Computerspielen - Sicherheitsaspekte von Offline- und Online-Games
  • Griesser Daniel (2022): State-of-the-art Algorithmen zur Generierung von Adversarial Examples - ein Vergleich
  • Gugler Anton (2022): Material demand forecasting : Ein Vergleich statistischer, Machine Learning und Deep Learning Methoden.
  • Temizkan Abdulkadir (2022): Evaluierung von Social Engineering Methoden
  • Mirocha Tobias (2021): PKI-basierte E-Mail-Verschlüsselung und -Signatur
  • Eichhorn Philipp (2021): Few-Shot Learning am Beispiel automatisierter Rechnungsklassifikation
  • Thurner Maximilian (2021): Entwicklung eines Konzepts zur Steigerung der Passwortsicherheit und dessen Anwendung in einer Sicherheitsanalyse
  • Divković Marijan (2021): Making Machine Learning Accessible for SMEs: Framework Requirements and Clustering Prototype
  • Klingenschmid Lukas (2021): Detektion von Laser-Range Finder Messpulsen unter Verwendung von Machine Learning Algorithmen
  • Lerch Judith (2021): Machine Learning zur Vorhersage von Zeitaufwand im Kontext von INNIO Jenbacher
  • Aumayr Daniel (2021): Automatische Erkennung von Bildmanipulationen durch mobile Applikationen mit einem CNN
Supervised master theses
  • Sandmayr Maximilian (2024): Video Analysis in Supermarkets to Prevent Theft
  • Kaltenstadler Marco (2024): Towards Efficient and Secure Update Management Mechanisms for IoT Devices: An Analysis of the Matter Standard
  • Moog Patrick (2022): Fooling Neural Networks for Age-/Gender- and Emotion-Prediction with Adversarial Patches
  • Sirbu Mihaela Roxana (2021): Humans vs. CNNs: susceptibility to invariance and sensitivity based adversarial examples
  • Weber David (2021): How much pruning is too much? The effects of neural network pruning on machine learning explainability
  • Hofer Nora (2020): On the Robustness of a BERT Model for ABSA against Input Level Adversarial Examples
  • Merkle Florian (2020): The Impact of Network Pruning on the Adversarial Robustness of Deep Neural Networks
  • Bleckmann Carl (2020): What‘s next for IoT Forensics? A Proposal for Integration of Multimedia Forensic Methods to IoT Forensic Concepts
  • Muhr Valentin (2019): Data Deletion in Deep Learning Networks